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Structural Analysis III 

1. Introduction 

1.1 Purpose 

The moment-area method, developed by Otto Mohr in 1868, is a powerful tool for 

finding the deflections of structures primarily subjected to bending. Its ease of finding 

deflections of determinate structures makes it ideal for solving indeterminate 

structures, using compatibility of displacement. 

 

 

Otto C. Mohr (1835-1918) 

 

Mohr’s Theorems also provide a relatively easy way to derive many of the classical 

methods of structural analysis. For example, we will use Mohr’s Theorems later to 

derive the equations used in Moment Distribution. The derivation of Clayperon’s 

Three Moment Theorem also follows readily from application of Mohr’s Theorems. 
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2. Theory 

2.1 Basis 

We consider a length of beam AB in its undeformed and deformed state, as shown on 

the next page. Studying this diagram carefully, we note: 

 

1. AB is the original unloaded length of the beam and A’B’ is the deflected 

position of AB when loaded. 

 

2. The angle subtended at the centre of the arc A’OB’ is   and is the change in 

curvature from A’ to B’. 

 

3. PQ is a very short length of the beam, measured as ds  along the curve and dx  

along the x-axis. 

 

4. d  is the angle subtended at the centre of the arc ds . 

 

5. d  is the change in curvature from P to Q. 

 

6. M is the average bending moment over the portion dx  between P and Q. 

 

7. The distance   is known as the vertical intercept and is the distance from B’ to 

the produced tangent to the curve at A’ which crosses under B’ at C. It is 

measured perpendicular to the undeformed neutral axis (i.e. the x-axis) and so 

is ‘vertical’. 

 

Dr. C. Caprani 5



Structural Analysis III 

 

Basis of Theory 

Dr. C. Caprani 6



Structural Analysis III 

Dr. C. Caprani 7

2.2 Mohr’s First Theorem (Mohr I) 

Development 

Noting that the angles are always measured in radians, we have: 

 

 
ds R d

ds
R

d





 

 
 

 

From the Euler-Bernoulli Theory of Bending, we know: 

 

 
1 M

R EI
  

 

Hence: 

 

 
M

d ds
EI

    

 

But for small deflections, the chord and arc length are similar, i.e. , giving: ds dx

 

 
M

d dx
EI

    

 

The total change in rotation between A and B is thus: 

 

 
B B

A A

M
d dx

EI
    

 



Structural Analysis III 

Dr. C. Caprani 8

The term M EI  is the curvature and the diagram of this term as it changes along a 

beam is the curvature diagram (or more simply the M EI  diagram). Thus we have: 

 

 
B

BA B A

A

M
d dx

EI
       

 

This is interpreted as: 

 

  Change in slope Area of  diagram
AB

AB

M

EI
    

 

 

This is Mohr’s First Theorem (Mohr I): 

 

The change in slope over any length of a member subjected to bending is equal 

to the area of the curvature diagram over that length. 

 

Usually the beam is prismatic and so E and I do not change over the length AB, 

whereas the bending moment M will change. Thus: 

 

 
1 B

AB

A

M dx
EI

    

    Area of diagram
Change in slope AB

AB

M

EI
  
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Example 1 

For the cantilever beam shown, we can find the rotation at B easily: 

 

 

Thus, from Mohr I, we have: 

 

 
 Change in slope Area of  diagram

1

2

AB
AB

B A

M

EI

PL
L

EI
 

    

   

 

 

Since the rotation at A is zero (it is a fixed support), i.e. 0A  , we have: 

 

 
2

2B

PL

EI
   

Dr. C. Caprani 9



Structural Analysis III 

Dr. C. Caprani 10

2.3 Mohr’s Second Theorem (Mohr II) 

Development 

From the main diagram, we can see that: 

 

 d x d    

 

But, as we know from previous,  

 

 
M

d dx
EI

    

 

Thus: 

 

 
M

d x dx
EI

     

 

And so for the portion AB, we have: 

 

 

 First moment of  diagram about 

B B

A A

B

BA

A

M
d x dx

EI

M
dx x

EI

M
B

EI

   

 
   

 



 

  

 

This is easily interpreted as: 
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Distance from  to centroid Area of 
Vertical

of  diagramIntercept  diagramBA
BA BA

B

MM
EIEI

                      

 

 

This is Mohr’s Second Theorem (Mohr II): 

 

For an originally straight beam, subject to bending moment, the vertical 

intercept between one terminal and the tangent to the curve of another 

terminal is the first moment of the curvature diagram about the terminal where 

the intercept is measured. 

 

There are two crucial things to note from this definition: 

 

 Vertical intercept is not deflection; look again at the fundamental diagram – it 

is the distance from the deformed position of the beam to the tangent of the 

deformed shape of the beam at another location. That is: 

 

    

 

 

 The moment of the curvature diagram must be taken about the point where the 

vertical intercept is required. That is: 

 

 BA AB    
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Example 2 

For the cantilever beam, we can find the defection at B since the produced tangent at 

A is horizontal, i.e. 0A  . Thus it can be used to measure deflections from: 

 

Thus, from Mohr II, we have: 

 

 

1 2

2 3BA

PL L
L

EI
              

 

And so the deflection at B is: 

 

 
3

3B

PL

EI
   
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2.4 Sign Convention 

Though the sign convention for Mohr’s Theorems is below, it is usually easier to note 

the sense of displacements instead. 

 

Positive Values 

If the net area of the BMD is positive (mostly sagging), then: 

 the change in rotation between two points is measured anti-clockwise from the 

tangent of the first point (Mohr’s First Theorem); 

 the deflected position of the member lies above the produced tangent (Mohr’s 

Second Theorem). 

 

 

 

Negative Values 

If the net area of the BMD is negative (mostly hogging), then: 

 the change in rotation between two points is measured clockwise from the tangent 

of the first point (Mohr’s First Theorem); 

 the deflected position of the member lies below the produced tangent (Mohr’s 

Second Theorem). 
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3. Application to Determinate Structures 

3.1 Basic Examples 

Example 3 

For the following beam, find B , C , B  and C  given the section dimensions shown 

and 210 kN/mmE  . 

 

 

 

To be done in class. 
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Example 4 

For the following simply-supported beam, we can find the rotation at A using Mohr’s 

Second Theorem. The deflected shape diagram is used to identify relationships 

between vertical intercepts and rotations: 

 

 

 

The key to the solution here is that we can calculate BA  using Mohr II but from the 

diagram we can see that we can use the formula S R  for small angles: 

 

 BA AL     

 

Therefore once we know BA  using Mohr II, we can find A BA L   . 

 

To calculate BA  using Mohr II we need the bending moment and curvature 

diagrams: 
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Thus, from Mohr II, we have: 

 

 
3

1

2 4 2

16

BA

PL L
L

EI

PL

EI

            



 

 

But, BA L A    and so we have: 

 

 
2

16

BA
A L

PL

EI

 



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3.2 Finding Deflections 

General Procedure 

To find the deflection at any location x from a support use the following relationships 

between rotations and vertical intercepts: 

 

 

 

Thus we: 

1. Find the rotation at the support using Mohr II as before; 

2. For the location x, and from the diagram we have: 

 

 x B xx B      

 



Structural Analysis III 

Maximum Deflection 

To find the maximum deflection we first need to find the location at which this 

occurs. We know from beam theory that: 

 

 
d

dx

   

 

Hence, from basic calculus, the maximum deflection occurs at a rotation, 0  : 

 

 

 

To find where the rotation is zero: 

1. Calculate a rotation at some point, say support A, using Mohr II say; 

2. Using Mohr I, determine at what distance from the point of known rotation (A) 

the change in rotation (Mohr I), Axd  equals the known rotation ( A ).  

3. This is the point of maximum deflection since: 

 

 0A Ax A Ad        
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Example 5 

For the following beam of constant EI: 

(a) Determine A , B  and C ; 

(b) What is the maximum deflection and where is it located? 

Give your answers in terms of EI. 

 

 

 

The first step is to determine the BMD and draw the deflected shape diagram with 

rotations and tangents indicated: 
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Rotations at A and B 

To calculate the rotations, we need to calculate the vertical intercepts and use the fact 

that the intercept is length times rotation. Thus, for the rotation at B: 

 

 

2 1 4 1
2 2 2 4

3 2 3 2

4 20

3 3

8

8

AB

AB

EI M

M

M

M

M

EI

                  
     

   
 



 

 

 

But, we also know that 6AB B  . Hence: 

 

 

8
6

4
1.33

3

B

B

M

EI
M M

EI E







I
  

 

 

Similarly for the rotation at A: 

 

 

2 1 1 1
4 4 4 2 2

3 2 3 2

16 14

3 3

10

10

BA

BA

EI M

M

M

M

M

EI

                   
     

   
 



 

 

 

But, we also know that 6BA A   and so: 
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10

6 A

M

EI
   

 

 
5

1.67
3A

M M

EI E


I
    

 

Deflection at C 

To find the deflection at C, we use the vertical intercept CB  and B : 

 

 

 

From the figure, we see: 

 

 4C B CB     

 

And so from the BMD and rotation at B: 

 

 
  1 4

4 1.33 4
2 3

2.665

C

C

EI M M

M

EI





     
 





 
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Maximum Deflection 

The first step in finding the maximum deflection is to locate it. We know tow things: 

1. Maximum deflection occurs where there is zero rotation; 

2. Maximum deflection is always close to the centre of the span. 

Based on these facts, we work with Mohr I to find the point of zero rotation, which 

will be located between B and C, as follows: 

 

 Change in rotation 0B B     

 

But since we know that the change in rotation is also the area of the M EI  diagram 

we need to find the point x where the area of the M EI  diagram is equal to B : 

 

 

 

Thus: 

 

 
 

2

1
0

4 2

8

B

B

x
EI M

x
EI M





  x     
 



 

 

But we know that 1.33B

M

EI
  , hence: 
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2

2

1.33
8

10.66

3.265 m from  or 2.735 m from 

M x
EI M

EI

x

x B A

   
 




 

 

So we can see that the maximum deflection is 265 mm shifted from the centre of the 

beam towards the load. Once we know where the maximum deflection is, we can 

calculate is based on the following diagram: 

 

 

 

Thus: 

 

 max B xx B     

 

 

 

2

max

max

1.33
8 3

4.342 1.450

2.892

x x
EI x M M

M

M

EI





        
 



 

 

And since 53.4 kNmM  , max

154.4

EI
  . 
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3.3 Problems 

1. For the beam of Example 3, using only Mohr’s First Theorem, show that the 

rotation at support B is equal in magnitude but not direction to that at A. 

 

2. For the following beam, of dimensions 150 mmb   and  and 

2

225 mmd 

10 kN/mmE  , show that 4  and  mm7 10  radB
  s 9.36B  . 

 

 

 

3. For a cantilever AB of length L and stiffness EI, subjected to a UDL, show that: 

 

 
3 4

;
6 8B B

wL wL

EI E
  

I
 

 

4. For a simply-supported beam AB with a point load at mid span (C), show that: 

 

 
3

48C

PL

EI
   

 

5. For a simply-supported beam AB of length L and stiffness EI, subjected to a UDL, 

show that: 

 

 
3 3 5

; ;
24 24 384A B C

wL wL wL4

EI EI
     

EI
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6. For the following beam, determine the deflections at A, E and the maximum 

overall deflection in the span. Take 240 MNmEI   

 

 

Ans. 6.00 mm, 2.67 mm, 8.00 mm 
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4. Application to Indeterminate Structures 

4.1 Basis of Approach 

Using the principle of superposition we will separate indeterminate structures into a 

primary and reactant structures.  

 

For these structures we will calculate the deflections at a point for which the 

deflection is known in the original structure. 

 

We will then use compatibility of displacement to equate the two calculated 

deflections to the known deflection in the original structure. 

 

Doing so will yield the value of the redundant reaction chosen for the reactant 

structure. 

 

Once this is known all other load effects (bending, shear, deflections, rotations) can 

be calculated. 

 

See the notes on the Basis for the Analysis of Indeterminate Structures for more on 

this approach. 
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4.2 Example 6: Propped Cantilever 

For the following prismatic beam, find the maximum deflection in span AB and the 

deflection at C in terms of EI. 

 

 

 

Find the reaction at B 

Since this is an indeterminate structure, we first need to solve for one of the unknown 

reactions. Choosing BV  as our redundant reaction, using the principle of 

superposition, we can split the structure up as shown: 

 

 

    Final     =  Primary        +  Reactant 

 

In which R is the value of the chosen redundant. 
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In the final structure (a) we know that the deflection at B, B , must be zero as it is a 

roller support. So from the BMD that results from the superposition of structures (b) 

and (c) we can calculate B  in terms of R and solve since 0B  . 

 

 

 

We have from Mohr II: 

 

 

 

( ) ( )

1 2 1 2
2 200 2 2 4 4 4

2 3 2 3

2000 64

3 3
1

2000 64
3

BA

b c

EI R

R

R

                     

           

 

 

 

 

But since 0A  , 0B BA     and so we have: 

 

  

0

1
2000 64 0

3
64 2000

31.25 kN

BAEI

R

R

R

 

 


 
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The positive sign for R means that the direction we originally assumed for it 

(upwards) was correct. 

 

At this point the final BMD can be drawn but since its shape would be more complex 

we continue to operate using the structure (b) and (c) BMDs.  

 

Draw the Final BMD 
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Find the location of the maximum deflection 

This is the next step in determining the maximum deflection in span AB. Using the 

knowledge that the tangent at A is horizontal, i.e. 0A  , we look for the distance x 

from A that satisfies: 

 

 0Ax A xd      

 

By inspection on the deflected shape, it is apparent that the maximum deflection 

occurs to the right of the point load. Hence we have the following: 

 

 

So using Mohr I we calculate the change in rotation by finding the area of the 

curvature diagram between A and x. The diagram is split for ease: 
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The Area 1 is trivial: 

 

 1

1 200 200
2

2
A

EI EI
     

 

For Area 2, we need the height first which is: 

 

 2

4 4 4 125 125 125 125

4 4

x R
h x

EI EI EI E

  
    

I
 

 

And so the area itself is: 

 

 2

125 125
A x x

EI EI
     

 

 

For Area 3 the height is: 

 

 3

125 125 125 125
h x x

EI EI EI EI
      

 

And so the area is: 
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 2

1 125

2
A x x

EI
    

 

Being careful of the signs for the curvatures, the total area is: 

 

 

1 2 3

2

2

125 125
200 125

4 8

125 125
125 200

8 4

AxEId A A A

x x x

x x

    

      
 

     
 

 

 

Setting this equal to zero to find the location of the maximum deflection, we have: 

 

 
2

2

125
125 200 0

8

5 40 64

x x

0x x

   

  

 

 

Thus, 5.89 mx   or 2.21 mx  . Since we are dealing with the portion AB, 

2.21 mx  . 

 

Find the maximum deflection 

Since the tangent at both A and x are horizontal, i.e. 0A   and 0x  , the deflection 

is given by: 

 

 max xA    

 

Using Mohr II and Areas 1, 2 and 3 as previous, we have: 
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Area 

1 

1 1

200
1.543

308.67

A x
EI

EI

  

 
 

Area 

2 

 

2

4 2.21 4 55.94

4

R
h

EI EI


    

 

2 2

55.94 2.21
2.21

2
136.61

A x
EI

EI

  


 

Area 

3 

 

3

125 69.06
2.21h

EI EI
    

 

3 3

1 69.06
2.21 1.473

2

112.43

A x
EI

EI

      


 

 

Thus: 

 

 
max

max

308.67 136.61 112.43

59.63
xBEI EI

EI





     


 

 

 

The negative sign indicates that the negative bending moment diagram dominates, i.e. 

the hogging of the cantilever is pushing the deflection downwards. 
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Find the deflection at C 

For the deflection at C we again use the fact that 0A   with Mohr II to give: 

 

 C CA    

 

 

 

From the diagram we have: 

 

 

1 4 1
2 200 4 4 125 2

2 3 2

100

CA

C

EI
8

3

EI


                 
    






  

 

The positive sign indicates that the positive bending moment region dominates and so 

the deflection is upwards. 
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4.3 Example 7: 2-Span Beam 

For the following beam of constant EI, using Mohr’s theorems: 

(a) Draw the bending moment diagram; 

(b) Determine, D  and E ; 

Give your answers in terms of EI. 

 

 

 

In the last example we knew the rotation at A and this made finding the deflection at 

the redundant support relatively easy. Once again we will choose a redundant 

support, in this case the support at B.  

 

In the present example, we do not know the rotation at A – it must be calculated – and 

so finding the deflection at B is more involved. We can certainly use compatibility of 

displacement at B, but in doing so we will have to calculate the vertical intercept 

from B to A, , twice. Therefore, to save effort, we use BA BA  as the measure which 

we apply compatibility of displacement to. We will calculate BA  through calculation 

of A  (and using the small angle approximation) and through direct calculation from 

the bending moment diagram. We will then have an equation in R which can be 

solved. 
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Rotation at A 

Breaking the structure up into primary and redundant structures: 

 

 

 

So we can see that the final rotation at A is: 

 

 P R

A A A     

 

To find the rotation at A in the primary structure, consider the following: 

 

 

 

By Mohr II we have: 
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   240 9 6 12960CAEI     

 

But we know, from the small angle approximation, 12CA A  , hence: 

 

 

12960
1080

12 12
1080

P CA
A

P

A

EI

EI






  

 
 

 

To find the rotation at A for the reactant structure, we have: 

 

 

 

  1
12 3 6 108

2CAEI R      
 

R  

12CA A   

 

108
9

12 12
9

R CA
A

R

A

R
EI R

R

EI






  

  
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Notice that we assign a negative sign to the reactant rotation at A since it is in the 

opposite sense to the primary rotation (which we expect to dominate). 

 

Thus, we have: 

 

 1080 9

P R

A A A

R

EI EI

   

 
 

 

Vertical Intercept from B to A 

The second part of the calculation is to find BA  directly from calculation of the 

curvature diagram: 

 

 

 

Thus we have: 

 

  1 1 3 1
6 3 6 240 3 3 240 3

2 3 2 2BAEI R                       
      

3

3



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18 1080 1440

2520 18
BA

BA

EI R

R

EI

    


 
 

 

Solution for R 

Now we recognize that 6BA A   by compatibility of displacement, and so: 

 

  

2520 18 1080 9
6

2520 18 6 1080 9

36 3960

110 kN

R R

EI EI EI

R R

R

R

    
 

  




 

 

Solution to Part (a) 

With this we can immediately solve for the final bending moment diagram by 

superposition of the primary and reactant BMDs: 
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Solution to Part (b) 

We are asked to calculate the deflection at D and E. However, since the beam is 

symmetrical D E   and so we need only calculate one of them – say D . Using the 

(now standard) diagram for the calculation of deflection: 

 

 

 

 
 9 1101080 90

A EI EI E
   

I
 

 
1 3

3 75 112.5
3 3DAEI         

  
 

 

But 3D A DA    , thus:  

 

 3 90 112.5

157.5

157.5

D

D E

EI

EI



 

 



 
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4.4 Example 8: Simple Frame 

For the following frame of constant 240 MNmEI  , using Mohr’s theorems: 

(a) Draw the bending moment and shear force diagram; 

(b) Determine the horizontal deflection at E. 

 

Part (a) 

Solve for a Redundant 

As with the beams, we split the structure into primary and reactant structures: 
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We also need to draw the deflected shape diagram of the original structure to identify 

displacements that we can use: 

 

 

 

To solve for R we could use any known displacement. In this case we will use the 

vertical intercept DB  as shown, because: 

 We can determine DB  for the original structure in terms of R using Mohr’s 

Second Theorem; 

 We see that 6DB B   and so using Mohr’s First Theorem for the original 

structure we will find B , again in terms of R; 

 We equate the two methods of calculating DB  (both are in terms of R) and 

solve for R. 
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Find DB  by Mohr II 

Looking at the combined bending moment diagram, we have: 

 

 

 

 
1 2 1

6 6 6 3 120 3 3
2 3 2

72 900

DBEI R
2

3

R

                             
 


  

 

Find B  by Mohr I 

Since the tangent at A is vertical, the rotation at B will be the change in rotation from 

A to B: 

 

 

to 

0

Area of 

BA B A

B

B

B A

d

M

EI

  



 
 


   
 

 

 

However, in this case we must be very careful. Looking at the net BMD and the 

deflected shape of member AB we see that the negative area must be larger since the 

member has tension on the left hand side (since, it is bending to the right): 
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Thus the area is: 

 

 
 to 

Area of 120 6 6 6

720 36
B A

M
R

EI

R

       
 

  

 

 

However, we are interested in the magnitude of the area (not its sign) to find the 

magnitude of the rotation at B. Therefore, by Mohr I: 

 

 

to 

Area of 

720 36

720 36

B
B A

M
EI

EI

R

R

    
 

  

 

 

 

This is so since we know the negative area (i.e. the 720) to be bigger than the positive 

area (i.e. the 36R). 
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Equate and Solve for R 

As identified previously: 

 

  
6

72 900 6 720 36

18.13 kN

DB B

R R

R

 

  



 

 

Diagrams 

Knowing R we can then solve for the reactions, bending moment and shear force 

diagrams. The results are: 
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Part (b) 

The movement at E is comprised of Dx  and 6 D  as shown in the deflection diagram. 

These are found as: 

 Since the length of member BD doesn’t change, Dx Bx  . Further, by Mohr II, 

Bx BA   . Thus we have: 

 

 
     6 6 3 120 6 3

202.5
BAEI R    

 
 

 

 By Mohr I, D B BDd    , that is, the rotation at D is the rotation at B minus the 

change in rotation from B to D: 

 

 

 

And so we have: 

 

 
1 1

6 6 120 3
2 2

146.25

BDEId R               


 

 

Notice that we still use the primary and reactant diagrams even though we know R. 

We do this because the shapes and distances are simpler to deal with. 
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From before we know: 

 

 36 720 67.5BEI R     

 

Thus, we have: 

 

 67.5 146.25

78.75

D B BEI EI d D   
 
 

 

 

The minus indicates that it is a rotation in opposite direction to that of B  which is 

clear from the previous diagram. Since we have taken account of the sense of the 

rotation, we are only interested in its absolute value. A similar argument applies to 

the minus sign for the deflection at B. Therefore: 

 

 

6

202.5 78.75
6

675

Ex Bx D

EI EI

EI

   

  



 

 

Using 240 MNmEI   gives 16.9 mmEx  . 
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4.5 Example 9: Complex Frame 

For the following frame of constant 240 MNmEI  , using Mohr’s theorems: 

(a) Determine the reactions and draw the bending moment diagram; 

(b) Determine the horizontal deflection at D. 

 

 

 

In this frame we have the following added complexities: 

 There is a UDL and a point load which leads to a mix of parabolic, triangular 

and rectangular BMDs; 

 There is a different EI value for different parts of the frame – we must take this 

into account when performing calculations and not just consider the M diagram 

but the M EI  diagram as per Mohr’s Theorems. 
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Solve for a Redundant 

As is usual, we split the frame up: 

 

 

 

Next we draw the deflected shape diagram of the original structure to identify 

displacements that we can use: 

 

Dr. C. Caprani 49



Structural Analysis III 

 

 

To solve for R we will use the vertical intercept DC  as shown, because: 

 We can determine DC  for the original structure in terms of R using Mohr II; 

 We see that 6DC C   and so using Mohr I for the original structure we will 

find B , again in terms of R; 

 As usual, we equate the two methods of calculating DC  (both are in terms of 

R) and solve for R. 
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The Rotation at C 

To find the rotation at C, we must base our thoughts on the fact that we are only able 

to calculate the change in rotation from one point to another using Mohr I. Thus we 

identify that we know the rotation at A is zero – since it is a fixed support – and we 

can find the change in rotation from A to C, using Mohr I. Therefore: 

 

 
 to 

0
A C C A

C

C

d  



 
 


 

 

 

 

At this point we must recognize that since the frame is swaying to the right, the 

bending moment on the outside ‘dominates’ (as we saw for the maximum deflection 

calculation in Example 6). The change in rotation is the difference of the absolute 

values of the two diagrams, hence we have, from the figure, and from Mohr I: 

 

 

    to 

1
360 8 240 4 6 8

2

3360 48

3360 48

A C

C

C

EId R

EI R

R

EI







        
 

 


 

Dr. C. Caprani 51



Structural Analysis III 

Dr. C. Caprani 52

The Vertical Intercept DC 

Using Mohr II and from the figure we have: 

 

 

 

 

1 2 1 3
1.5 6 6 6 6 360 6

2 3 3 4

1.5 72 3240

48 2160

DC

DC

DC

EI R

EI R

R

EI

                             
  


 




 

 

Note that to have neglected the different EI value for member CD would change the 

result significantly. 

 

Solve for R 

By compatibility of displacement we have 6DC C   and so: 

 

 

 48 2160 6 3360 48

336 22320

66.43 kN

R R

R

R

  




 

 

With R now known we can calculate the horizontal deflection at D. 
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Part (b) - Horizontal Deflection at D 

From the deflected shape diagram of the final frame and by neglecting axial 

deformation of member CD, we see that the horizontal displacement at D must be the 

same as that at C. Note that it is easier at this stage to work with the simpler shape of 

the separate primary and reactant BMDs. Using Mohr II we can find Cx  as shown: 

 

 

 

 
      1 2
6 8 4 360 8 4 4 240 4 4

2 3

192 14720

CAEI R

R

              

      

 

 

 

Now substituting 66.4 kNR   and Dx Cx BA    : 

 

 
1971.2

49.3 mmDx EI
 

    

 

Note that the negative sign indicates that the bending on the outside of the frame 

dominates, pushing the frame to the right as we expected. 
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Part (a) – Reactions and Bending Moment Diagram 

Reactions 

Taking the whole frame, and showing the calculated value for R, we have: 

 

 

 

 

 

2

0 20 6 66.4 0 53.6 kN

0 60 0 60 kN 

6
M about 0 66.4 6 20 60 4 0 201.6 kNm

2

y A A

x A A

A A

F V V

F H H

A M M

       

     

           









  

 

Note that it is easier to use the superposition of the primary and reactant BMDs to 

find the moment at A: 

 

  6 66.4 600 201.6 kNmAM      

 

The negative sign indicate the moment on the outside of the frame dominates and so 

tension is on the left. 
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Bending Moment Diagram 

We find the moments at salient points: 

 

 

2

M about 0

6
20 66.4 6 0

2
38.4 kNm

C

C

C

M

M



     

  


 

And so tension is on the bottom at C. 

 

The moment at B is most easily found from superposition of the BMDs as before: 

 

  6 66.4 360 38.4 kNmBM     

 

And so tension is on the inside of the frame at B. Lastly we must find the value of 

maximum moment in span CD. The position of zero shear is found as: 

 

 

 

 
53.6

2.68 m
20

x    

 

And so the distance from D is: 

 

 6 2.68 3.32 m    

 

The maximum moment is thus found from a free body diagram as follows: 

 



Structural Analysis III 

 

 

2

max

M about 0

3.32
20 66.4 3.32 0

2
110.2 kNmC

X

M

M



     

  


 

And so tension is on the bottom as 

expected. 

 

Summary of Solution 

In summary the final solution for this frame is: 
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4.6 Problems 

1. For the following prismatic beam, find the bending moment diagram and the 

rotation at E in terms of EI. 

 

 

Ans. 25kNCV   , 130E EI   

 

2. For the following prismatic beam, find the bending moment diagram and the 

rotation at C in terms of EI. 

 

 

Ans. 150kNCV   , 1125E EI   
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3. For the following prismatic frame, find the bending moment and shear force 

diagrams and the horizontal deflection at E in terms of EI. 

 

 

Ans. 27.5kNCV   , 540Ex EI  , 45C EI   
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5. Further Developments 

5.1 Theorem of Three Moments 

Introduction 

Continuous beams feature in many structures, and as such the ability to analyse them 

is crucial to efficient design. Clapeyron derived the Three Moment Theorem in about 

1857 for this purpose, thereby enabling the design of the previously ‘undesignable’. 

He derived them using Mohr’s Theorems. 

 

They were initially derived for the very general case of spans with different flexural 

rigidities, span lengths and support levels. We will only consider the case of different 

span lengths to keep the problem simple. Even so, the solution procedure is exactly 

the same and the result is widely applicable. 
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Development 

We consider the following two internal spans of an arbitrary continuous beam: 
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To solve the problem we will identify two relationships and join them to form an 

equation that enables us to solve continuous beams. 

 

First, we calculate the two vertical intercepts, AB  and CB : 

 

 1 1
1AB B

A x
L

EI
    (1) 

 2 2
2CB B

A x
L

EI
     (2) 

 

Note that  is negative since it is upwards. We can solve these two equations for CB

B : 

 

 1 1

1

B

A x

EIL
  

 2 2

2

B

A x

EIL
   

 

And then add them to get: 

 

 1 1 2 2

1 2

0
A x A x

EIL EIL
   

 

And since EI is common we have our first relationship: 

 

 1 1 2 2

1 2

0
A x A x

L L
   (3) 
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The next step involves determining the first moment of area of the two final bending 

moment diagrams in terms of the free and reactant bending moment diagrams. In 

words, the first moment of the final BMD about A is equal to the sum of the first 

moments of the free BMD and reactant BMDs about A. Mathematically, from the 

figure, we thus have: 

 

    1
1 1 1 1 1 1 1

1

2 2 3A B A

L 2
A x S x M L M M L L

                  
 (4) 

 

In which the reactant BMD has been broken into a rectangular and triangular parts 

(dotted in the figure). Similarly, we have: 

 

    2
2 2 2 2 2 2 2

1

2 2 3C B C

L 2
A x S x M L M M L L

                  
 (5) 

 

Introducing equations (4) and (5) into equation (3) gives: 

 

 
   1 21 1 1 2 2 2

1 2

0
2 3 2 3

B A B CA C
M M L M M LS x M L S x M L

L L

   
       

  





 

 

Carrying out the algebra: 

 

 1 1 1 2 2 2 1 1 2

1 22 3 3 2 3 3
A B A C B C 2M L M L M L M L M L M L S x S x

L L

               
     

 

 

 1 1 2 2 1 1 2

1 2

2 2

6 6 6 6
A B C B 2M L M L M L M L S x S x

L L

             
     
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And finally we arrive at the Three Moment Equation: 

 

   1 1 2 2
1 1 2 2

1 2

2 6A B C

S x S x
M L M L L M L

L L

 
     

 
  (6) 

 

This equation relates the unknown reactant moments to the free bending moment 

diagram for each two spans of a continuous beam. By writing this equation for each 

adjacent pair of spans, a sufficient number of equations to solve for the unknown 

reactant moments result. 

 

The term in brackets on the right of the equation represents the total angular 

discontinuity (  BA BCEI   ) at B if A, B and C were pinned supports. 

 

As a further development, we can use equations (1) and (2) with Mohr’s First 

Theorem to find: 

 

 

 

 

 

 

1 1
1

1

1 1
1

1

2 2
2

2

2 2
2

2

1
1 2

6

1
2

6

1
2

6

1
1 2

6

A A

B A

C B

C C

x L
S M

EI L

x L
S M M

EI L

x L
S M M

EI L

x L
S M

EI L







  
     

  
 

    

 

    
 
  

     
  

B

B

B

M

M


 (7) 

 

With this information, all deflections along the beam can be found using the 

numerical procedure to be explained later. 
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Example 10 

To illustrate the application of the Three Moment Theorem, and also to derive a 

useful result, we will consider the general case of a four-span beam with equal spans, 

L, subject to a UDL, w: 

 

 

 

In the figure, the areas of the free BMDs are all: 

 

 
2 3

1,2,3,4

2

3 8 12

wL wL
S L

 
  

 
 

 

And the distances to the centroids are all 2L . Thus we can write: 
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3 31

12 2 24

Sx wL L wL

L L

       
 

 

Next, we apply the Three Moment Equation to each pair of spans: 

 

 

ABC:  
3 3

2 6
24 24B C

wL wL
M L L M L

      
 

 

BCD:  
3 3

2 6
24 24B C D

wL wL
M L M L L M L

 
      

 
 

CDE:  
3 3

2 6
24 24C D

wL wL
M L M L L

      
 

 

 

Simplifying: 

 

 

2

2

2

4
2

4
2

4
2

B C

B C D

C D

wL
M M

wL
M M M

wL
M M

  

   

  

 

 

This is three equations with three unknowns and is thus readily solvable. 

 

An algebraic approach is perfectly reasonable, but we can make better use fo the tools 

at our disposal if we rewrite this in matrix form: 
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2

4 1 0 1

1 4 1 1
2

0 1 4 1

B

C

D

M
wL

M

M

     
      
    
      


 

 

 

Now we can write can solve for the moment vector suing matrix inversion: 

 

 

1

2
4 1 0 1

1 4 1 1
2

0 1 4 1

B

C

D

M
wL

M

M


    
       
       







 

 

To obtain the inverse of the 3×3 matrix we could resort to algebra, but a better idea is 

to use Excel or Matlab. Using Matlab: 

 

 

 

We can see that the decimal results of the matrix inverse are really just multiples of 

1/56 (the matrix determinant). In Excel we can find the matrix inverse (using 

MINVERSE), but cannot find the determinant directly, so we use the Matlab result: 
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Thus our solution becomes: 

 

 
2 2

15 4 1 1 12
1

4 16 4 1 8
2 56 112

1 4 15 1 12

B

C

D

M
wL wL

M

M

     
                              







 

 

It is quite useful to know the denominators for easier comparisons, thus: 

 

  
2 2

9.33 14 9.33B C D

wL wL wL
M M M

   2 
   
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5.2 Numerical Calculation of Deformation 

Introduction 

One of the main applications of the Moment-Area method in the modern structural 

analysis environment, where use of computers is prevalent, is in the calculation of 

displacements. Most structural analysis software is based on the matrix stiffness (or 

finite element) method. This analysis procedure returns the displacements and 

rotations at node points only. The problem then remains to determine the 

displacements along members, in between the nodes. This is where the moment-area 

method is applied in typical analysis software programs. 

 

We will demonstrate a simple procedure to find the deflections and rotations along a 

member once the bending moments are known at discrete points along the member. 

In addition, we will consider the member prismatic: EI will be taken as constant, 

though this not need be so in general. 

 

You can download all the files and scripts from the course website. 
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Development 

Consider a portion of a deformed member with bending moments known: 

 

 

 

Our aim is to determine the rotation and deflection at each station (1, 2, …) given the 

values of bending moment  and the starting rotation and deflection, 1 2, ,M M  0 , 0 . 

We base our development on the fundamental Euler-Bernoulli relationships upon 

which Mohr’s Theorems were developed: 
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 1
1

i

i i
i

M
dx

EI
  



    (8) 

 1
1

i

i i
i

dx  


    (9) 

 

From these equations, and from the diagram, we can see that: 

 

 
1

Mdx
EI

    

 dx     

 

Thus we have: 

 

 1 1

1
i i i Mdx

EI
           (10) 

 1 1i i i dx            (11) 

 

In this way once 0 , 0  are known, we can proceed along the member establishing 

rotations and deflections at each point. 
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Implementation 

To implement this method, it just remains to carry out the integrations. To keep 

things simple, we will use the Trapezoidal Rule. More accurate methods are possible, 

such as Simpson’s Rule, but since we can usually choose the number of stations to be 

large, little error will result. 

 

Thus equations (10) and (11) become: 

 

  1 1

1

2i i i i

h
M M

EI
       (12) 

 1 1

1

2i i i i h        (13) 

 

To proceed we will consider the following example, for which we know the result: 

 Simply-support beam; 

 6 mL  ; 

 3 2180 10  kNmEI   ; 

 Loading: UDL of 20 kN/m. 

 

Our main theoretical result is: 

 

 
 
 

44

5

5 20 65 1
1.885mm

384 384 1.8 10 1000

wL

EI
   


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MS Excel 

We can implement the formulas as follows: 

 

 

 

And drag down these formulas for 100 points to get the following spreadsheet: 

 

 

 

The deflection with 100 points along the beam is 1.875 mm – a very slight difference 

to the theoretical result. 
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Matlab 

Matlab has a very useful function for our purposes here: cumtrapz. This function 

returns the cumulative results of trapezoidal integration along a function. Thus our 

script becomes: 

 

% Using Moment-Area to find deformations along members 
 
L = 6; 
EI = 1.8e5; 
w = 20; 
h = 0.05; 
 
x = 0:h:L; 
Va = w*L/2; 
M = Va.*x-w*x.^2./2; 
Ro = -w*(L)^3/(24*EI); 
Ri = cumtrapz(M)*h/EI + Ro; 
d = cumtrapz(Ri)*h; 
 
subplot(3,1,1);  
    plot(x,M);  
    ylabel('Bending Moment (kNm)'); 
subplot(3,1,2);  
    plot(x,1e3*Ri);  
    ylabel('Rotation (mrads)'); 
subplot(3,1,3);  
    plot(x,d*1e3);  
    xlabel ('Distance Along Member (m)');  
    ylabel('Deflection (mm)'); 

 

As may be seen, most of this script is to generate the plots. The cumtrapz function 

takes the hard work out of this approach. 

 

The central deflection result is 1.875 mm again. 

 

The output is in this screenshot: 
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For maximum flexibility, it is better to write a generic function to perform these 

tasks: 

 

function [R d] = MomentArea(M, EI, h, Ro, do) 
% This function calculates the rotations and deflections along a 
flexural 
% member given the bending moment vector, M, a distance step, h, 
initial  
% deflection and rotation at node 0, do, Ro, and the flexural 
rigidity, EI. 
 
n = length(M);                  % number of stations 
R = zeros(n,1);                 % vector of rotations 
d = zeros(n,1);                 % vector of deflections 
 
R(1) = Ro;                      % assign starting rotation and 
deflection 
d(1) = do; 
 
R = cumtrapz(M)*h/EI + Ro;     % Do moment area calcs 
d = cumtrapz(R)*h; 

 

To use this function for our example we make the following calls: 
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L = 6; 
EI = 1.8e5; 
w = 20; 
h = 0.05; 
x = 0:h:L; 
Va = w*L/2; 
M = Va.*x-w*x.^2./2; 
Ro = -w*(L)^3/(24*EI); 
[R d] = MomentArea(M, EI, h, Ro, 0); 

 

And once again, of course, our result is 1.875 mm. 

 

As one final example, we calculate deflections for the beam of Example 7. To do this 

we make use of the calculated value for 90A EI    and use the following script: 

 

% Ex. 7: 2-span beam - calculate deformed shape 
EI = 1e6; 
h = 0.1; 
x = 0:h:12; 
Mfree = 80*x - 80*max(x-3,0) - 80*max(x-9,0); 
Mreactant = 55*x-110*max(x-6,0); 
M = Mfree - Mreactant; 
Ro = -90/EI; 
[R d] = MomentArea(M, EI, h, Ro, 0); 
subplot(3,1,1);  
    plot(x,M); grid on; 
    ylabel('Bending Moment (kNm)'); 
subplot(3,1,2);  
    plot(x,1e3*R); grid on; 
    ylabel('Rotation (mrads)'); 
subplot(3,1,3);  
    plot(x,d*1e3); grid on; 
    xlabel ('Distance Along Member (m)');  
    ylabel('Deflection (mm)'); 

 

Note that we have used a value of EI that makes it easy to interpret the results in 

terms of EI. 
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As can be seen, the complete deflected profile is now available to us. Further, the 

deflection at D is found to be 157.4 EI , which compares well to the theoretical value 

of 157.5 EI , found in Example 7. 
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5.3 Non-Prismatic Members 

Introduction 

In all examples so far we have only considered members whose properties do not 

change along their length. This is clearly quite a simplification since it is necessary 

for maximum structural efficiency that structures change shape to deal with 

increasing or reducing bending moments etc. The Moment-Area Method is ideally 

suited to such analyses. We will consider one simple example, and one slightly more 

complex and general. 
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Example 11 

We consider the following cantilever and determine the deflections at B and C: 

 

 

 

The BMD and curvature diagrams thus become: 

 

 

 

To calculate the deflections, consider the deflected shape diagram: 

 

 

 

From Mohr’s First Theorem: 
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  25
2 1B BA EI

       
 

 

Thus: 

 

 
50

B EI
   

 

Similarly, though with more terms for the deflection at C we have: 

 

    25 50
2 3 2 1C CA EI EI

               
 

 

 
250

C EI
   
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Example 12 

We determine here an expression for the deflection at the end of a cantilever subject 

to a point load at its tip which has linearly varying flexural rigidity: 

 

 

 

We must derive expression for both the moment and the flexural rigidity. Considering 

the coordinate x, increasing from zero at B to L at A: 

 

  M x Px  

    B A B

x
EI x EI EI EI

L
    

 

If we introduce the following measure of the increase in EI: 

 

 A B

B

EI EI
k

EI


  

 

We can write: 
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   1B

x
EI x EI k

L
   
 

 

 

Now we can write the equation for curvature: 

 

 

 
1B

B

M Px
x

xEI EI k
L

PL x

EI L kx


  
 

 


 

 

To find the tip deflection we write: 

 

 

  
0

L

B BA

M
x xdx

EI
      

 

And solving this (using symbolic computation!) gives: 

 

 
  23

3

2 2log 1

2B

k kPL

EI k


    k 
  

 
 

 

To retrieve our more familiar result for a prismatic member, we must use L’Hopital’s 

Rule to find the limit as . As may be verified by symbolic computation: 0k 

 

 
  23 3

30

2 2log 1
Prismatic lim

2 3B k

k k kPL PL

EI k




    
  

  EI
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As a sample application, let’s take the following parameters: 

 10 kN ; P 

 4 mL  ; 

 2 . 10 MNmBEI 

 

We will investigate the change in deflection with the increase in EI at A. Firstly, we 

find our prismatic result: 

 

 
 

 
33

3

10 4
Prismatic 21.33 mm

3 3 10 10B

PL

EI
   


 

 

And then we plot the deflection for a range of k values: 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
5

10

15

20

25 X: 0.01
Y: 21.17

Stiffness Increase at A (k)

D
ef

le
ct

io
n 

(m
m

)

X: 2
Y: 8.789

 

 

As can be seen, when , in other words when 2k  3A BEI EI , our deflection is 8.79 

mm – a reduction to 41% of the prismatic deflection. 
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Matlab Scripts 

The Matlab scripts to calculate the previous results are: 

 

% Use Symbolic Toolbox to perform integration 
syms P L EI x k positive; 
 
M = sym('P*x');             % M equation 
EI = sym('EI*(1+k*x/L)');   % EI equation 
Mohr2 = M/EI*x;             % 1st moment of M/EI diagram 
def = int(Mohr2,x,0,L);     % definite integral 
pretty(def);                % display result 
 
limit(def,k,0);             % Prove limit as k->0 is prismatic 
result 
 
% Plot change in deflection by varying k 
clear all; 
P = 10; L = 4; EI = 10e3; k = 0.01:0.01:2; 
d = 1/2*P*L^3*(-2.*k+2*log(1+k)+k.^2)/EI./k.^3; 
plot(k,d*1e3); xlabel('Stiffness Increase at A (k)');  
ylabel('Deflection (mm)') 
 
d1 = P*L^3/(3*EI);          % prismatic result 
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6. Past Exam Questions 

6.1 Summer 1998 

 

 

 

Ans. 75kNCV   , 4500Dx EI    
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6.2 Summer 2005 

 

Ans. 22.5kNDV   , 1519Dx EI    
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6.3 Summer 2006 

 

Ans. 36 mmC   , 
max

27.6 mm
AB

    
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6.4 Summer 2007 

 

4.  (a) For the frame shown in Fig. Q4(a), using Mohr’s Theorems: 

 

(i) Determine the vertical reaction at joint C; 

 

(ii) Draw the bending moment diagram; 

 

(iii) Determine the horizontal deflection of joint C. 

 

Note: 

You may neglect axial effects in the members. 

Take for all members. 336 10  kNmEI   2

                      (15 marks) 

 

B

A

C

FIG. Q4(a)

100 kN

3 
m

6 m

 

 

Ans. 15kNCV   , 495Cx EI    
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6.5 Semester 1 2007/8 

 
QUESTION 3 
 
For the beam shown in Fig. Q3, using the Moment-Area Method (Mohr’s Theorems):  
 
(i) Draw the bending moment diagram; 
 
(ii) Determine the maximum deflection; 
 
(iii) Draw the deflected shape diagram. 
 
 
Note:  

Take . 3 220 10  kNmEI  
(40 marks) 

 
 

A

HINGE

40 kN

2 m 2 m2 m4 m

FIG. Q3

B C D E

 
 

 

Ans. , 70kNBV   max, 47.4AC EI  , 267C EI  , 481E EI   

Dr. C. Caprani 88



Structural Analysis III 

6.6 Semester 1 2008/9 

 
QUESTION 3 
 
For the frame shown in Fig. Q3, using the Moment-Area Method (Mohr’s Theorems):  
 
(iv) Draw the bending moment diagram; 
 
(v) Determine the vertical and horizontal deflection of joint E; 
 
(vi) Draw the deflected shape diagram. 
 
 
Note:  

Take . 3 220 10  kNmEI  
(40 marks) 

 

A B
4 m 2 m

FIG. Q3

C

100 kNm

D

E

1 
m

2 
m

 
 

Ans. 37.5kNBV   , 20 mmEy   , 65 mmEx    
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6.7 Semester 1 2009/10 

 
QUESTION 4 
 
For the frame shown in Fig. Q4, using the Moment-Area Method (Mohr’s Theorems):  
 
(vii) Draw the bending moment diagram; 
 
(viii) Determine the horizontal deflection of joint D; 
 
(ix) Draw the deflected shape diagram. 

(25 marks) 
 
 
Note:  

Take . 3 220 10  kNmEI  
 
 

A

B C

D

FIG. Q4

3 m

 6
 m

3 m

60 kN

20
 k

N
/m

 

 
 

Ans. 4.7kNDV   , 725.6 mmDx    
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7. Appendix 

7.1 Area Properties 

These are well known for triangular and rectangular areas. For parabolic areas we 

have: 

 

Shape Area Centroid 

 

2

3
A xy  

1

2
x x  

 

2

3
A xy  

5

8
x x  

 

1

3
A xy  

3

4
x x  
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