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1. Introduction

1.1 Purpose

The moment-area method, developed by Otto Mohr in 1868, is a powerful tool for
finding the deflections of structures primarily subjected to bending. Its ease of finding
deflections of determinate structures makes it ideal for solving indeterminate

structures, using compatibility of displacement.

Otto C. Mohr (1835-1918)

Mohr’s Theorems also provide a relatively easy way to derive many of the classical
methods of structural analysis. For example, we will use Mohr’s Theorems later to
derive the equations used in Moment Distribution. The derivation of Clayperon’s

Three Moment Theorem also follows readily from application of Mohr’s Theorems.
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2. Theory

2.1 Basis

We consider a length of beam AB in its undeformed and deformed state, as shown on

the next page. Studying this diagram carefully, we note:

1. AB is the original unloaded length of the beam and A’B’ is the deflected

position of AB when loaded.

2. The angle subtended at the centre of the arc A’OB’ is @ and is the change in

curvature from A’ to B’.

3. PQ is a very short length of the beam, measured as ds along the curve and dx

along the x-axis.

4. d@ isthe angle subtended at the centre of the arc ds.

5. d@ isthe change in curvature from P to Q.

6. M is the average bending moment over the portion dx between P and Q.

7. The distance A is known as the vertical intercept and is the distance from B’ to
the produced tangent to the curve at A’ which crosses under B’ at C. It is

measured perpendicular to the undeformed neutral axis (i.e. the x-axis) and so

is ‘vertical’.
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2.2 Mohr’s First Theorem (Mohr I)

Development

Noting that the angles are always measured in radians, we have:

From the Euler-Bernoulli Theory of Bending, we know:

i_M
R ElI
Hence:
do=M g
El

But for small deflections, the chord and arc length are similar, i.e. ds = dx, giving:

dQ:M-dx
El

The total change in rotation between A and B is thus:

(M
El

> —y
o
%

>'—uw
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The term M/EI is the curvature and the diagram of this term as it changes along a

beam is the curvature diagram (or more simply the M/EI diagram). Thus we have:

|\/|
:‘95 HA E

>'—.UU

This is interpreted as:

[Change in slope], . = {Area of % diagram}

AB

This is Mohr’s First Theorem (Mohr I):

The change in slope over any length of a member subjected to bending is equal

to the area of the curvature diagram over that length.

Usually the beam is prismatic and so E and | do not change over the length AB,
whereas the bending moment M will change. Thus:
1 B
QAB :E:[M dX

[Change in Slope]AB _ [Area of I\/IEId|ag|r;,1m]AB
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Example 1

For the cantilever beam shown, we can find the rotation at B easily:

: é B £I ConsmpaTt
ol .
AA - a— SSPE AT A
/ e
5 S CHMIGE 1A
) e score AT
SesVE AT S
M=PL
“w2rs BAAD
YL

Thus, from Mohr I, we have:

[Change in slope], . = {Area of % diagram}
AB

1 PL
]

Since the rotation at A is zero (it is a fixed support), i.e. 8, =0, we have:

P
® 2FI
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2.3 Mohr’s Second Theorem (Mohr II)

Development

From the main diagram, we can see that:

dA=x-d@

But, as we know from previous,

d@ =—-dx

Thus:

B
[s]
>
Il
1 >%=—w

First moment of % diagram about B

This is easily interpreted as:

10
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Area of Distance from B to centroid

Vertical Y
= X
Intercept |, % diagram of (Ej diagram
BA

BA

This is Mohr’s Second Theorem (Mohr 11):

For an originally straight beam, subject to bending moment, the vertical
intercept between one terminal and the tangent to the curve of another
terminal is the first moment of the curvature diagram about the terminal where

the intercept is measured.
There are two crucial things to note from this definition:
e Vertical intercept is not deflection; look again at the fundamental diagram — it

Is the distance from the deformed position of the beam to the tangent of the

deformed shape of the beam at another location. That is:

A#0O

e The moment of the curvature diagram must be taken about the point where the

vertical intercept is required. That is:

ABA * AAB
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Example 2

For the cantilever beam, we can find the defection at B since the produced tangent at

Ais horizontal, i.e. 8, =0. Thus it can be used to measure deflections from:

A

\F NSNS
o)
G
%
$
i

Thus, from Mohr I, we have:

1 PL][2L
Ao, == L. — || ==
BA {2 EI}{B}

And so the deflection at B is:

_pv
5 3El
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2.4 Sign Convention

Though the sign convention for Mohr’s Theorems is below, it is usually easier to note

the sense of displacements instead.

Positive Values

If the net area of the BMD is positive (mostly sagging), then:

e the change in rotation between two points is measured anti-clockwise from the
tangent of the first point (Mohr’s First Theorem);

o the deflected position of the member lies above the produced tangent (Mohr’s

Second Theorem).

ﬂ/\——{\ B

=) A B

Negative Values

If the net area of the BMD is negative (mostly hogging), then:

e the change in rotation between two points is measured clockwise from the tangent
of the first point (Mohr’s First Theorem);

o the deflected position of the member lies below the produced tangent (Mohr’s

Second Theorem).

— L => —1 ! —-—

4,/\{\3 A Nr=wro,® = }‘/N_ﬂz\___f_"”
B
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3. Application to Determinate Structures

3.1 Basic Examples

Example 3
For the following beam, find o;, 8., 6; and 6. given the section dimensions shown

and E =10 kKN/mm?.

131
B - }] 690
- 2’7" u;

|

¥—

3

To be done in class.
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Example 4
For the following simply-supported beam, we can find the rotation at A using Mohr’s
Second Theorem. The deflected shape diagram is used to identify relationships

between vertical intercepts and rotations:

The key to the solution here is that we can calculate A;, using Mohr Il but from the

diagram we can see that we can use the formula S = Ré for small angles:

Agp=L-0,

Therefore once we know A, using Mohr I, we can find 8, =A,, /L.

To calculate A;, using Mohr Il we need the bending moment and curvature

diagrams:
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/e
v
W EZ
e
YEL

Thus, from Mohr I, we have:

1 PL L
Ao =| = L. — || =
BA {2 4EI}{2}

B PL®
16El

But, A;, =L-6, and so we have:

16
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3.2 Finding Deflections

General Procedure

To find the deflection at any location x from a support use the following relationships

between rotations and vertical intercepts:

Thus we:
1. Find the rotation at the support using Mohr 11 as before;

2. For the location x, and from the diagram we have:

0, =X-0; —Ag

X

17 Dr. C. Caprani
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Maximum Deflection
To find the maximum deflection we first need to find the location at which this

occurs. We know from beam theory that:

_do

S=—
dx

Hence, from basic calculus, the maximum deflection occurs at a rotation, =0

€4 ..é:Z:-— 5#
T e e eu A )

b
/.ole.qx
AR

» -
| eL

To find where the rotation is zero:
1. Calculate a rotation at some point, say support A, using Mohr Il say;
2. Using Mohr I, determine at what distance from the point of known rotation (A)

the change in rotation (Mohr 1), dé,, equals the known rotation (6,).

3. This is the point of maximum deflection since:

0,-d6, =0,-6,=0

18 Dr. C. Caprani
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Example 5

For the following beam of constant El:
(a) Determined,, 6, and & ;

(b) What is the maximum deflection and where is it located?

Give your answers in terms of EI.

yfokA

e % °

Pty

The first step is to determine the BMD and draw the deflected shape diagram with
rotations and tangents indicated:

Ui aun
M= S3-4 kadna
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Rotations at A and B
To calculate the rotations, we need to calculate the vertical intercepts and use the fact

that the intercept is length times rotation. Thus, for the rotation at B:

oG ampoegpem

(2
3 3
=8M

F Ay =—
AB EI

But, we also know that A,, =66, . Hence:

60, =M
El

0, =M _13sM
3EI El

Similarly for the rotation at A:

o on){e

=M (E_'_Ej
3 3
=10M

_10M
BA EI

But, we also know that A,, =66, and so:

20 Dr. C. Caprani
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60, — 10M

El
M g
3El El

Deflection at C

To find the deflection at C, we use the vertical intercept A, and 6,

= ©8

& .
5& 5-"—/
Lfes k. [
_br.s" e

M. .

From the figure, we see:
O, =46, — A,

And so from the BMD and rotation at B:

El 5, =4(1.33M )_(%.4. M j(gj

-5, = 26650
El
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Maximum Deflection

The first step in finding the maximum deflection is to locate it. We know tow things:
1. Maximum deflection occurs where there is zero rotation;

2. Maximum deflection is always close to the centre of the span.

Based on these facts, we work with Mohr I to find the point of zero rotation, which

will be located between B and C, as follows:

Change in rotation =6, —0=6,

But since we know that the change in rotation is also the area of the M /El diagram

we need to find the point x where the area of the M/EI diagram is equal to 6,:

B

Thus:

But we know that 6, :1.33%, hence:

22 Dr. C. Caprani
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E1f133M |om X
El 8

x* =10.66
X=23.265 m from B or 2.735 m from A

So we can see that the maximum deflection is 265 mm shifted from the centre of the
beam towards the load. Once we know where the maximum deflection is, we can

calculate is based on the following diagram:

A Ee

S| T 0
g

xCs Dxz
g Xt

Thus:
5max = XQB _AXB
ElS,, =x(133M)—| M2 (fj
8 \3

= M (4.342-1.450)

5 —289M
El

And since M =53.4 kNm, o __ :%.

El
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3.3 Problems

1. For the beam of Example 3, using only Mohr’s First Theorem, show that the

rotation at support B is equal in magnitude but not direction to that at A.

2. For the following beam, of dimensions b=150 mm and d=225mm and

E =10 kN/mm?, show that 6, = 7x10™ rads and &, =9.36 mm.

% }sgu

7T 1/
A

3. For a cantilever AB of length L and stiffness El, subjected to a UDL, show that:

wl® wL*
B = y 58 =
6EI 8EI

4. For a simply-supported beam AB with a point load at mid span (C), show that:

_PL
¢ 48El

5. For a simply-supported beam AB of length L and stiffness El, subjected to a UDL,

show that:

wl® 9 wl® 5wl

AT24EIT BT 24E1T “° 384El
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6. For the following beam, determine the deflections at A, E and the maximum

overall deflection in the span. Take El =40 MNm’

YO krdnr ‘6050\3 ‘ 20eA)

Cq ;;B c ;_g_é
J, 2| 4 o ¢ Jlézlf

Ans. 6.00 mm, 2.67 mm, 8.00 mm
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4. Application to Indeterminate Structures

4.1 Basis of Approach

Using the principle of superposition we will separate indeterminate structures into a

primary and reactant structures.

For these structures we will calculate the deflections at a point for which the

deflection is known in the original structure.

We will then use compatibility of displacement to equate the two calculated

deflections to the known deflection in the original structure.

Doing so will yield the value of the redundant reaction chosen for the reactant

structure.

Once this is known all other load effects (bending, shear, deflections, rotations) can

be calculated.

See the notes on the Basis for the Analysis of Indeterminate Structures for more on

this approach.

26 Dr. C. Caprani
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4.2 Example 6: Propped Cantilever

For the following prismatic beam, find the maximum deflection in span AB and the

deflection at C in terms of El.
y ook
A D By
7 %
< YA
i e SO

e =

Find the reaction at B
Since this is an indeterminate structure, we first need to solve for one of the unknown

reactions. Choosing V, as our redundant reaction, using the principle of

superposition, we can split the structure up as shown:

-To} ofRe .
E ]
X IIV — B

Final

Primary + Reactant

In which R is the value of the chosen redundant.
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In the final structure (a) we know that the deflection at B, J,, must be zero as it is a

roller support. So from the BMD that results from the superposition of structures (b)

and (c) we can calculate o5 in terms of R and solve since 6, =0.

TASCEOT
AT %

1
=5(2000-64R)

But since 6, =0, 6, = A, =0 and so we have:

ElAg, =0
%(2000—64R):0
64R = 2000
R =+31.25 kN

28 Dr. C. Caprani
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The positive sign for R means that the direction we originally assumed for it

(upwards) was correct.

At this point the final BMD can be drawn but since its shape would be more complex

we continue to operate using the structure (b) and (c) BMDs.

Draw the Final BMD

29 Dr. C. Caprani
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Find the location of the maximum deflection
This is the next step in determining the maximum deflection in span AB. Using the

knowledge that the tangent at A is horizontal, i.e. 8, =0, we look for the distance x

from A that satisfies:
dé,, =6,-6 =0

By inspection on the deflected shape, it is apparent that the maximum deflection

occurs to the right of the point load. Hence we have the following:

So using Mohr | we calculate the change in rotation by finding the area of the

curvature diagram between A and x. The diagram is split for ease:

30 Dr. C. Caprani
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x
¥ A
1e0 2 |
€I bR
ET 3 (
The Area 1 is trivial:

1 200 200

:—-2-_:_

A 2 El El

For Area 2, we need the height first which is:

h2

_4-x 4R _4-125—125_125_125X

4 El AE| El  EI

And so the area itself is:

125 125
=X:|————X
& [EI El }

For Area 3 the height is:

125 [125 125 125
h,=—-— ———X|=—X

El El El El

And so the area is:

31
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1 125
< X-——X
2 El

Being careful of the signs for the curvatures, the total area is:
Eldg,, =—A + A + A
125 j 125 ,
+—X

= —200 + X(125 —TX

= (%—gj x? +125x — 200
8 4

Setting this equal to zero to find the location of the maximum deflection, we have:

—12?5x2 +125x -200=0

5x°> —40x+64=0

Thus, x=589m or x=221m. Since we are dealing with the portion AB,
X=2.21m.

Find the maximum deflection

Since the tangent at both A and x are horizontal, i.e. 8, =0 and &, =0, the deflection

Is given by:
Using Mohr Il and Areas 1, 2 and 3 as previous, we have:
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Structural Analysis I11

(22
R ‘ g =-290 1 543
Area 25 X X Aixl__ﬁ' '
1 _308.67
JL l El
22— §.2_= -3
o _4-221 4R 5594
2.27 2 4 El  El
R
R SS7¢
Area EAETEP FZ | Ay 55.94 2.21
5 AX, =221 220 222
El 2
LA =1 136.61
~El
2.2 h = 551,125 _69.06
4"“——*’ El  EI
Groe [y A
e | 2 AX —[1.2 21-—69'06]1 473
3 - T2 7T R T
T .0 = U3 112.43
= TR

Thus:

EIA, =EIS,  =-308.67+136.61+112.43

s - —59.63
El

The negative sign indicates that the negative bending moment diagram dominates, i.e.

the hogging of the cantilever is pushing the deflection downwards.

33
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Find the deflection at C

For the deflection at C we again use the fact that &, =0 with Mohr Il to give:

wS / &3
=
¥

From the diagram we have:

ElIA., = —(1 2- 200)(ﬂ + 4j + (1 : 4-125)(2 +§J
2 3 2 3

5. = +100
El

The positive sign indicates that the positive bending moment region dominates and so

the deflection is upwards.
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4.3 Example 7: 2-Span Beam

For the following beam of constant El, using Mohr’s theorems:
(a) Draw the bending moment diagram;
(b) Determine, 6, and o ;

Give your answers in terms of El.

Sczitud S'tiu,d
[4] G
PO S §

In the last example we knew the rotation at A and this made finding the deflection at
the redundant support relatively easy. Once again we will choose a redundant

support, in this case the support at B.

In the present example, we do not know the rotation at A — it must be calculated — and
so finding the deflection at B is more involved. We can certainly use compatibility of
displacement at B, but in doing so we will have to calculate the vertical intercept

from B to A, A,,, twice. Therefore, to save effort, we use A,, as the measure which

BA?
we apply compatibility of displacement to. We will calculate A, through calculation
of 6, (and using the small angle approximation) and through direct calculation from

the bending moment diagram. We will then have an equation in R which can be

solved.
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Rotation at A

Breaking the structure up into primary and redundant structures:

So we can see that the final rotation at A is:

0,=6, +06;

To find the rotation at A in the primary structure, consider the following:

= R S

A o
k-‘ /% biﬂ

S S

¥ c

l(r” ((+[l|y

1vo 1L 4yo

By Mohr 11 we have:
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ElA,, =(240-9)(6) =12960

But we know, from the small angle approximation, A, =126, , hence:

A, 12960

Elg° == =222 1080
12 12

g 21080
El

To find the rotation at A for the reactant structure, we have:

/ R
9573/_/\ b
F 3
, 2
R "
3R
(| ("‘( [T~
.
z %
EuACA:(%.lz-st(s)zlosR
A, =120,
Elgr = 2a 18R _gp
12 12
ng=-R
El
37
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Notice that we assign a negative sign to the reactant rotation at A since it is in the

opposite sense to the primary rotation (which we expect to dominate).

Thus, we have:

0,=0; + 6"
1080 9R
El El

Vertical Intercept from B to A

The second part of the calculation is to find A,, directly from calculation of the

curvature diagram:

Thus we have:

ElA,, :{%@3@@@}(2403)(

38
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EIA,, =-18R +1080+1440

_ 2520-18R

SA
BA El

Solution for R
Now we recognize that A,, =66, by compatibility of displacement, and so:

2520-18R 6(1080 B 9Rj

El El El
2520 ~18R = 6(1080 - 9R)
36R = 3960

R=110 kN

Solution to Part (a)
With this we can immediately solve for the final bending moment diagram by

superposition of the primary and reactant BMDs:

N o
240 140

BuDs Cldm)
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Solution to Part (b)

We are asked to calculate the deflection at D and E. However, since the beam is

symmetrical ¢, =J. and so we need only calculate one of them — say &, . Using the

(now standard) diagram for the calculation of deflection:

€ N\ A )

;K Sp 36A

Dpa
| s
(l({\ ’I‘
7%

g _ 1080 9(110) 90
AEI El El

EIA,, = (1.3- 75}(% =1125
3 3

But o, =360, —A,,, thus:

Els, =3(90)-112.5
~157.5
157.5

% =% e

40
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4.4 Example 8: Simple Frame

For the following frame of constant El =40 MNm?, using Mohr’s theorems:
(a) Draw the bending moment and shear force diagram;

(b) Determine the horizontal deflection at E.

ok

-3 e |
6

7 A mr &E

ree7
22

Part (a)
Solve for a Redundant

As with the beams, we split the structure into primary and reactant structures:

o $e

7757
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We also need to draw the deflected shape diagram of the original structure to identify

displacements that we can use:

To solve for R we could use any known displacement. In this case we will use the
vertical intercept A, as shown, because:

e We can determine A, for the original structure in terms of R using Mohr’s

Second Theorem;
e We see that A,z =66, and so using Mohr’s First Theorem for the original

structure we will find 6,, again in terms of R;

e We equate the two methods of calculating A, (both are in terms of R) and

solve for R.

42 Dr. C. Caprani
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Find A, by Mohr 11

Looking at the combined bending moment diagram, we have:

o [om {1 o35

=/72R-900

Find 6, by Mohr |

Since the tangent at A is vertical, the rotation at B will be the change in rotation from
A to B:

However, in this case we must be very careful. Looking at the net BMD and the
deflected shape of member AB we see that the negative area must be larger since the

member has tension on the left hand side (since, it is bending to the right):

43 Dr. C. Caprani
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Wit +()))

Thus the area is:

Area of (Mj =-120-6+6-6R
B toA

=—720+36R

However, we are interested in the magnitude of the area (not its sign) to find the
magnitude of the rotation at B. Therefore, by Mohr I:

Area of (M)
EI BtoA

=|-720+36R|
=720-36R

ElG, =

This is so since we know the negative area (i.e. the 720) to be bigger than the positive
area (i.e. the 36R).
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Equate and Solve for R

As identified previously:

ADB :608
72R —900 = 6[720 - 36R]
R =18.13 kN

Diagrams

Knowing R we can then solve for the reactions, bending moment and shear force
diagrams. The results are:

fis 297 .87
1 <.
“.?_S{}_.BW (2 v 7 I
? Y-y 1213 813
/
7T v
1S \_» < s
bor frena Boad 2FD
CMM\ (J"'J)
45
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Part (b)

The movement at E is comprised of &,, and 66, as shown in the deflection diagram.

These are found as:
o Since the length of member BD doesn’t change, J,, = J;, . Further, by Mohr I,

Og, = Ag,- Thus we have:

EIA,, =[6R-6][3] - [120-6][3]
=-202.5

e By Mohr |, 6, =6, —d6b,,, that is, the rotation at D is the rotation at B minus the

change in rotation from B to D:

&z

— — f—

> \df‘gsb

-

And so we have:

Eldg,, :{%-6R-6}—E-120-3}

=146.25

Notice that we still use the primary and reactant diagrams even though we know R.

We do this because the shapes and distances are simpler to deal with.
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From before we know:

El6, =36R-720=67.5

Thus, we have:

El6, =EI6, —d6,,
=67.5-146.25
= _78.75

The minus indicates that it is a rotation in opposite direction to that of 8, which is

clear from the previous diagram. Since we have taken account of the sense of the
rotation, we are only interested in its absolute value. A similar argument applies to

the minus sign for the deflection at B. Therefore:

O, = O, + 606,

202.5 78.75
= +6.
El El
_675
El

Using EI =40 MNm? gives 5., =16.9 mm.
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4.5 Example 9: Complex Frame

For the following frame of constant El =40 MNm?, using Mohr’s theorems:
(a) Determine the reactions and draw the bending moment diagram;

(b) Determine the horizontal deflection at D.

Lobadfun
ey
1 ol =

—D

BB |

B
EL

1
X Ay
)%

¢

—

In this frame we have the following added complexities:

e There is a UDL and a point load which leads to a mix of parabolic, triangular
and rectangular BMDs;

e There is a different El value for different parts of the frame — we must take this
into account when performing calculations and not just consider the M diagram

but the M /EIl diagram as per Mohr’s Theorems.
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Solve for a Redundant

As is usual, we split the frame up:

1o /L/(/(tL/?/I/
Y ¢o
6&) fﬂ = —» "'
<&
o
| &

1L

) Ve
o

ER

Next we draw the deflected shape diagram of the original structure to identify

displacements that we can use:
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Sex Snx
—,

T-G

¢ A

<
~

To solve for R we will use the vertical intercept A as shown, because:
e We can determine A for the original structure in terms of R using Mohr II;
e We see that A,. =66, and so using Mohr | for the original structure we will
find 6;, again in terms of R;
o As usual, we equate the two methods of calculating A,. (both are in terms of

R) and solve for R.
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The Rotation at C

To find the rotation at C, we must base our thoughts on the fact that we are only able
to calculate the change in rotation from one point to another using Mohr I. Thus we
identify that we know the rotation at A is zero — since it is a fixed support — and we

can find the change in rotation from A to C, using Mohr I. Therefore:

dHAtoC =6’c HA
~6.-0

At this point we must recognize that since the frame is swaying to the right, the
bending moment on the outside ‘dominates’ (as we saw for the maximum deflection
calculation in Example 6). The change in rotation is the difference of the absolute

values of the two diagrams, hence we have, from the figure, and from Mohr I:

Eldo :‘(360-8)+(%-240-4)‘—‘(6R-8)‘

AtoC

El6, =3360-48R

3360—-48R

0, =
El
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The Vertical Intercept DC

Using Mohr Il and from the figure we have:

%o
C Pl D
{+[(("
&l

s {2 ] s3]

1.5E1A,, =72R —3240

_ 48R - 2160

S A -

Note that to have neglected the different EI value for member CD would change the

result significantly.

Solve for R

By compatibility of displacement we have A_. =66, and so:

48R — 2160 = 6(3360 - 48R)
336R =22320
R =66.43 kN

With R now known we can calculate the horizontal deflection at D.
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Part (b) - Horizontal Deflection at D

From the deflected shape diagram of the final frame and by neglecting axial
deformation of member CD, we see that the horizontal displacement at D must be the
same as that at C. Note that it is easier at this stage to work with the simpler shape of

the separate primary and reactant BMDs. Using Mohr Il we can find &, as shown:

Sc,( = AC;A
1 .
C c!
A
94.. -0
1 2
ElA,, =[(6R -8)(4)]{(360-8)(4){5-4.240)(4+§-4ﬂ
=192R —14720
Now substituting R=66.4 kN and J,, =35, =A,,:
S = _19E7|1'2 =49.3 mm —

Note that the negative sign indicates that the bending on the outside of the frame

dominates, pushing the frame to the right as we expected.
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Part (a) — Reactions and Bending Moment Diagram
Reactions

Taking the whole frame, and showing the calculated value for R, we have:

1o
C LV AAAA
T%“Tﬁ "
“© 503 —
A #
M x =ty —
A

SF, =0 -(20-6)-66.4-V, =0 .V, =536 kN 1
2. F.=0 “H,-60=0 “H,=60KkN «

2
D MaboutA=0 .. MA+66.4-6—20-%—60-4=0 - M, =+201.6 kNm

Note that it is easier to use the superposition of the primary and reactant BMDs to
find the moment at A:

M, =6(66.4) — 600 = —201.6 kNm

The negative sign indicate the moment on the outside of the frame dominates and so
tension is on the left.
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Bending Moment Diagram

We find the moments at salient points:

c. No D > Mabout C=0

M, T 6

M +20-=-~66.4-6=0
L ¢ _;r eh M, =+38.4 KNm

And so tension is on the bottom at C.

The moment at B is most easily found from superposition of the BMDs as before:
M, =6(66.4)—360 =38.4 kNm

And so tension is on the inside of the frame at B. Lastly we must find the value of

maximum moment in span CD. The position of zero shear is found as:

AR A, 536
X=——=2.68m
20

ts6 t oot

And so the distance from D is:

,}a_"__,lf
6-2.68=3.32m

The maximum moment is thus found from a free body diagram as follows:
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16 > Mabout X =0
4 O % O O % 2
Mm{! .-.Mmax+20-3':;2 -66.4-3.32=0
3
.M. =+110.2 KkNm
k 332 | c
A And so tension is on the bottom as
expected.

Summary of Solution

In summary the final solution for this frame is:

331
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4.6 Problems

1. For the following prismatic beam, find the bending moment diagram and the

rotation at E in terms of El.

/] 4‘{'0@\!& SolInn
S 5 £ i

. 2.1, 3 1,’?-)‘,14,

Ans. V., =25kN T, 6. =130/ElI

2. For the following prismatic beam, find the bending moment diagram and the

rotation at C in terms of El.

ool

8 ¢
;,.;_ &

Jé Q *3*

Ans. V. =150kN T, 6, =1125/EI

5

OSSN
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3. For the following prismatic frame, find the bending moment and shear force

diagrams and the horizontal deflection at E in terms of EI.

B
(tOlen) Dﬁﬁéouu
A ﬁ % ;g;

)L 3 L 3 )

Ans. V, =275kN T, 5. =540/El , 6, =45/El
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5. Further Developments

5.1 Theorem of Three Moments

Introduction

Continuous beams feature in many structures, and as such the ability to analyse them
Is crucial to efficient design. Clapeyron derived the Three Moment Theorem in about
1857 for this purpose, thereby enabling the design of the previously ‘undesignable’.

He derived them using Mohr’s Theorems.

They were initially derived for the very general case of spans with different flexural
rigidities, span lengths and support levels. We will only consider the case of different
span lengths to keep the problem simple. Even so, the solution procedure is exactly

the same and the result is widely applicable.
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Development

We consider the following two internal spans of an arbitrary continuous beam:

Mgy Mea WM

— = e

A%% &%% C-?é,
& e =k

= —

Xy X2
Kk A—F__ _ frse/
- + = PRMARY
®g, Brrd

Mg
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To solve the problem we will identify two relationships and join them to form an

equation that enables us to solve continuous beams.
First, we calculate the two vertical intercepts, A,, and A_:

_AX
Aw =2 =0k 1)

A= g

CB El - B2 (2)

Note that A, is negative since it is upwards. We can solve these two equations for

AX

AX,
EIL, °

And then add them to get:

ﬂ_FM:O
EIL  EIL,

And since EI is common we have our first relationship:
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The next step involves determining the first moment of area of the two final bending
moment diagrams in terms of the free and reactant bending moment diagrams. In
words, the first moment of the final BMD about A is equal to the sum of the first
moments of the free BMD and reactant BMDs about A. Mathematically, from the

figure, we thus have:

=5 L) 5+ (3, - 2 ) @

In which the reactant BMD has been broken into a rectangular and triangular parts

(dotted in the figure). Similarly, we have:

AzxzZSZYZ{(MCLZ)(_zj{%(MB_MC)LZJ@LZH )

{SX+MAL1+(MB—MA)LL}{SZYZ+MCL2+(MB—MC)L2}:O
L2 3 2 3

Carrying out the algebra:

(Ml M ML), (ML ML, ML) (S, S,
2 3 3 2

(Mél_l +2M63|_1j+(|v|é|_2 +2MBLZJZ_(81_Z+EJ
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And finally we arrive at the Three Moment Equation:

ML +2M, (L +L)+ MCLzz—a(Sll_lxl

+ SZYZJ (6)

This equation relates the unknown reactant moments to the free bending moment
diagram for each two spans of a continuous beam. By writing this equation for each
adjacent pair of spans, a sufficient number of equations to solve for the unknown

reactant moments result.

The term in brackets on the right of the equation represents the total angular

discontinuity (EI (6,, +6,.)) at B if A, B and C were pinned supports.

As a further development, we can use equations (1) and (2) with Mohr’s First

Theorem to find:

6,=>|s[1-%|-L@m, +m,)
El| L) 6
1 B R
0,-= —81%+%(MA+2MB)}
T x L (")
:E_—Szi+€2(Mc+2MB)}
1| %) L
0 =—|s|1-22|_2(2m +M
c EI_{ L 5 (M + B)}

With this information, all deflections along the beam can be found using the

numerical procedure to be explained later.
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Example 10

To illustrate the application of the Three Moment Theorem, and also to derive a
useful result, we will consider the general case of a four-span beam with equal spans,
L, subject to a UDL, w:

%)
. 5 % <% Dé £ﬁ77
¢ ¢ )
Jr/ ﬁ“ 4" 7 7
I ‘Z':‘I:/‘L’ “/r ‘o
< N+ ror
L wl we
TN ¥
M = O \ ui AJA M o)
+2° <1\ Y "‘\c—\\\\jt"b\ NN et
Bad

In the figure, the areas of the free BMDs are all:

2 3
81234:E e L:WL
30 8 12

And the distances to the centroids are all L/2. Thus we can write:
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SX_1{wl (L) _wl
L L 12 \2 24

Next, we apply the Three Moment Equation to each pair of spans:

3 3
ABC: 2M,(L+L)+M,L=-6 wi, wi
24 24
3 3
BCD: M,L+2M, (L+L)+M,L=—6f Y Wb
24 24
3 3
CDE: M L+2M, (L+L)=-6 2o WL
24 24
Simplifying:
wL’®
AM, +M_ =
B C 2
2
MB+4MC+MD=—W2L
2
MC+4I\/ID:—W2L

This is three equations with three unknowns and is thus readily solvable.

An algebraic approach is perfectly reasonable, but we can make better use fo the tools

at our disposal if we rewrite this in matrix form:
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4 1 0](M, 2
141MC:—%1
0 1 4||M, 1

Now we can write can solve for the moment vector suing matrix inversion:

1

M, NERESUN
M t=—11 4 1| &1
M, 01 4| 2

To obtain the inverse of the 3x3 matrix we could resort to algebra, but a better idea is

to use Excel or Matlab. Using Matlab:

File Edit View Graphics Debug Desktop ‘Window Help

e

= B o oo | 8| P | curentDirectory: | CMATLAETwork

Shortcuts [2] How to Acdd  [2] what's New

A X wﬂ
WEHE%S 8 [ s LI
Mame |Value 1 M=1[410;
A 410141014 z 14 1;
meactur [15-41;-4 16 -4;1 -4 15] 5 01 41;
A Mirw [0.26786 -0.071429 0.017857,-0.07142 4
Ha 56 ] d = det(M;
[
4/ Array Editor - Mfactor E@a 7 Minv = inv(M);
File Edit Yiew Graphi Debu Deskbc Windo Help » | a2 x g
Eﬁ éé E @ . » O v =l Mfactor = d*Minwv:
1 2 3
" — 4 1 al
2 -4 16 -4 = |
3 1 -4 15 ]
4 sl
2
Current Directory | Wiorkspace

We can see that the decimal results of the matrix inverse are really just multiples of
1/56 (the matrix determinant). In Excel we can find the matrix inverse (using
MINVERSE), but cannot find the determinant directly, so we use the Matlab result:
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B MicTosoft Bxcel = Matme Inversion. x(s

@ File Edit Wew Insert Format  Tools Data  Window  Help

NEHRS GQAIVEH ¥RA-F9- 2 =4k M@ - @k
Avial -0 -B JUIEE=EEHEy s BN EEH--A-LEBFGF FEae EERE2 S
F2 - e =MINVERSE(EZ: D41}
A B C D E F G H I J K L M M
i
2 1 1 0 [0.267857] -0.07143 0.017857 15 4 1
3 1 1 1 0.07143 0285714 -0.07143 = -4 16 -4
4 0 1 4 0.017857 | -0.07143| 0.267857 1 -4 15
5

Thus our solution becomes:

M, 2 15 -4 171 (12
VL (iJ 4 16 —all1b=_WE

2 | 56 112
M, 1 -4 15][1 12

It is quite useful to know the denominators for easier comparisons, thus:

—wl*>  —wl®? —wl?
9.33 14 9.33

USSR
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5.2 Numerical Calculation of Deformation

Introduction

One of the main applications of the Moment-Area method in the modern structural
analysis environment, where use of computers is prevalent, is in the calculation of
displacements. Most structural analysis software is based on the matrix stiffness (or
finite element) method. This analysis procedure returns the displacements and
rotations at node points only. The problem then remains to determine the
displacements along members, in between the nodes. This is where the moment-area

method is applied in typical analysis software programs.

We will demonstrate a simple procedure to find the deflections and rotations along a
member once the bending moments are known at discrete points along the member.
In addition, we will consider the member prismatic: EI will be taken as constant,

though this not need be so in general.

You can download all the files and scripts from the course website.
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Development

Consider a portion of a deformed member with bending moments known:

Our aim is to determine the rotation and deflection at each station (1, 2, ...) given the

values of bending moment M ,M,,... and the starting rotation and deflection, 6,, J,.

We base our development on the fundamental Euler-Bernoulli relationships upon

which Mohr’s Theorems were developed:
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¢ M
6 -0 =|—dx 8
0= (8)
5, -3,, = [ 6dx 9)

From these equations, and from the diagram, we can see that:

A@:ijde
El
AS = [ Bdx
Thus we have:
0 :al+Aezal+ijde (10)
El
5,=0,+A5=5_+[0dx (11)

In this way once 6,, o, are known, we can proceed along the member establishing

rotations and deflections at each point.
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Implementation

To implement this method, it just remains to carry out the integrations. To keep
things simple, we will use the Trapezoidal Rule. More accurate methods are possible,
such as Simpson’s Rule, but since we can usually choose the number of stations to be

large, little error will result.

Thus equations (10) and (11) become:

1 h
0=0_+—(M_+M )— 12
|—l+2( |—l+ I)EI ( )

8,=0.,+ (0, +0)h (13)

To proceed we will consider the following example, for which we know the result:

Simply-support beam;
L=6m,;

El =180x10° KNm?;
Loading: UDL of 20 kN/m.

Our main theoretical result is:

s_ 5w 5(2006° 1

= = =1.885mm
384El  384(1.8x10°)1000
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MS Excel

We can implement the formulas as follows:

Length L 51 m
Load W 20 kM
Stiffness El 180000 Km?
Mo, of points n 100
Initial Rotation  Ro = LA3(Z47EN rads
Initial Deflection Do 1] m

Station x (m) M (kNm) Area of M/EI Rotation {rads) Area of R Deflection (m)
0 =BT/l =W L*$C11/2-w* $C1102/2 [0 =Ro 0 =0
1 =(B12/n)*L =W L*$C12/2-wSC1202/2 | =0 5*($D12+$D11)*$CH12/El  =F11+E12 =0 5" §F12+$F11)"$CH12 | =G12+H11
2 =(B13/n)*L =W L*$C13/2-w S C1302/2 | =0 5%(§D13+$D12)*$CH12/El  =F12+E13 =0.5"§F13+§F12)"$CH12 | =G13+H12
3 =(B14/n) L =w L C14/2-w ST 140272 | =0 5% (D 14+$D13)"$CH12Z/El  =F13+E14 =0.5%$F14+§F13)"3CH12 =G 14+H13
4 =(B15/M)"L =W L*C15/2-w*$C 15722 | =0.5%($D15+$D14)"$CH12Z/El  =F14+E15 =0.5"$F15+$F14)"3CFH12 | =G15+H14

And drag down these formulas for 100 points to get the following spreadsheet:

B e fR e met Fpme ook Dala Wedw el
1FdR30 a3 70 4% Fi - RT3 W -8Q
a & ERTT] .
Aval =10 - B LU EWEE S - H S EEOD-D-A-F ST FE 6 a8t AW 2]
E12 - £ =0 STS0IZAE01T)
AT & | ¢ | o [ F " i 2 W W G v [ 0 = i U
&3 Lengn -
| Load
|4 Trvens =
| Ho. of porss Ew
| e Fctation Theorsticsl {086 me En
& sl Defiecon Momerd Ares AATE me %
K
Is E «
&) station te) Area ol Dafinctisn (m) "
|1t [ 0000 oo s g
[zl 1 . 0. o
i ¥ : o Ex
|aa ' o o "
[ f nom i
|5 = e 0 100 200 200 400 00 %0 o0
s ' . Diwtanco Akong Do OVl
i) ] 0000
£ [ 001 40
|ED n 000 s
= () 00
| 12 0001 1 00
|2 1] 000
|= 1 0001 ¥ soe
= 1 0001 3
|z 10 o001 >
| 7 e § noceem
|= 1 200 i 'y T
(= 1 2001 & soem
|3t ] G001
|22 ) a0t 4 00E03
| o0t
| ol o0 -
ol oo NN
o0t
£ o0t
- o 001
n m 001
[ 3 000 -
[at ) noa
| sl a0z
| = T
|a ) 00
fas 3 00
|3 ® 00
| ® 0002
|& Eol 002
|= £l 000
= ] D002
|5t an 0002
“ 000z
i;: :; ':% Distance Alang Desm (m)
I " 0001

The deflection with 100 points along the beam is 1.875 mm — a very slight difference

to the theoretical result.

72 Dr. C. Caprani



Structural Analysis |11

Matlab

Matlab has a very useful function for our purposes here: cumtrapz. This function
returns the cumulative results of trapezoidal integration along a function. Thus our

script becomes:

% Using Moment-Area to find deformations along members

6;

I = 1.8e5;
20;
0.05;

SoS=E=mr

= 0:h:L;

w*L/2;

= Va.*X-w*x."2./2;
-w*(L)YN3/(24*El);
cumtrapz(M)*h/El + Ro;
= cumtrapz(Ri)*h;

a

X
\Y
M
Ro
Ri
d

subplot(3,1,1);

plot(x,M);

ylabel ("Bending Moment (kNm)*);
subplot(3,1,2);

plot(x,1e3*Ri1);

ylabel ("Rotation (mrads)®);
subplot(3,1,3);

plot(x,d*1e3);

xlabel ("Distance Along Member (m)*);

ylabel ("Deflection (mm)*);

As may be seen, most of this script is to generate the plots. The cumtrapz function

takes the hard work out of this approach.

The central deflection result is 1.875 mm again.

The output is in this screenshot:
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File Edit Text Cell Tools Debug Desktop ‘Window Help

O % BB o o |8 P cwentbrectory, | CWATLABTworContBeam v| ..
Shortcuts (2] How to Add (2] YWhat's New
2 x||§)
o = »
% o P % I DEH| B~ &M 2820 8o E@E
Mame ‘Value 1 4 Using Moment-Airea to find deformations = Fle Edt Wiew Insert Tools Desktop Window Help
e 18sH00e 2 DEHE kRQAOD(E 0B =0
HL 3 3- L= 6
EH <1121 double> 4- EI = 1.8e5 E
Hri <1%121 double> 5- w=20; £ 100
Hro -0.001 - h = 0.05; =
Hva 60 v 5 =0t
Hd <1121 double> gy * - 0:nil =
== 005 2 - Va = wtlL/Z; =
- = - ~ . E 0 :
Hw a0 10 M = Va.™u-uwrx."2./2; [ i) 1 7 3 4 5 B
Hx <0x121 doubles | [|11 7 B = -wrILITE/(240ED) =
12 - Ri = cumtrapz (M) *h/EI + Ro: oy 1 T
13 - d = cumtrapz (Ri) *h: E
14 =
15 - subploti3,1,1): =
16 — plotix,M): g
- . e :
17 vlshel ('EBending Moment (kMm)'): i] 1 7 3 F 5 B
18 - subplot(3,1,2);
18 | = plotix,1e3*R1i); = 0 i
zZ0 — vlabel('Rotation (mrads)'); é
21 - subploti3,1,3): S 4
%] a0l llz2 - plotix,d¥1e3); g
Current Directory | warkspace 23 - xlshel |('Distance Llong Mewber (m)'): ‘g B ) ) n ) )
— 28|= vlabel ('Deflection (mm)'): i] 1 2 3% 3 4 5 5
= Distance Along ¥ <1875 (i)
5 Using Moment—Ares [~ cumsimpzonm  * | tempm X BendingDispsm = || Mament Area Exal

For maximum flexibility, it is better to write a generic function to perform these

tasks:

function [R d] = MomentArea(M, EI,

h, Ro,

do)

% This function calculates the rotations and deflections along a

flexural

% member given the bending moment
initial

% deflection and
rigidity, EIl.

rotation at node

vector,

0, do,

M, a distance step, h,

Ro, and the flexural

length(M);
zeros(n,1l);
zeros(n,1);

Q 0>
Il

%
%
%

number of stations
vector of rotations
vector of deflections

R(1) = Ro; %
deflection
d(1) = do;

R = cumtrapz(M)*h/El + Ro;
d cumtrapz(R)*h;

assign

starting rotation and

% Do moment area calcs

To use this function for our example we make the following calls:
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L = 6;

El = 1.8e5

w = 20;

h = 0.05;

X = 0:h:L;

Va = w*L/2;

M = Va.*X-w*x."2./2;

Ro = -w*(L)"3/(24*El);

[R d] = MomentArea(M, EI, h, Ro, 0);

And once again, of course, our result is 1.875 mm.

As one final example, we calculate deflections for the beam of Example 7. To do this

we make use of the calculated value for 8, =—90/EI and use the following script:

% Ex. 7: 2-span beam - calculate deformed shape

El = 1e6;
h =0.1;
X = 0:h:12;

Mfree = 80*x - 80*max(x-3,0) - 80*max(x-9,0);
Mreactant = 55*x-110*max(x-6,0);
M = Mfree - Mreactant;
Ro = -90/EI;
[R d] = MomentArea(M, EI, h, Ro, 0);
subplot(3,1,1);

plot(x,M); grid on;

ylabel ("Bending Moment (kNm)*);
subplot(3,1,2);

plot(x,1e3*R); grid on;

ylabel ("Rotation (mrads)®);
subplot(3,1,3);

plot(x,d*1e3); grid on;

xlabel ("Distance Along Member (m)*);

ylabel ("Deflection (mm)*);

Note that we have used a value of El that makes it easy to interpret the results in

terms of El.
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File Edt Text Cel Tools Debug Desktop Window Help

= Current Directory: | CWATLABT WvorkiContBearm v . t
D@ BBy | K| ? 2
Shortcuts (2] How to Add [#] What's New:
? x||E
e M > B
l= L I - L RACEIE LY HE - e eafi=if
Mame |\/’a|ue 1 % Ex. 7: Z-span hesm - calculate deformed shape || Fle Edk View Insert Tools Deskiop Window Help £
He 1e-+106 2 - EI = leé; DEedsE K eaadqde g 08 5O
i =1%121 doublex 3- ho=o0.1: —
A miree <1121 douklex 4- x = 0:h:iz; E
FAMreactant  <1x121 double> & - Mfree = B0%x - 80%max (x-3,0) - 80%max(x-2,0); = 100 T T
Hr <1%121 double> 6 - MNMreactant = 55%x-110%max(x—6,0]; E : :
Hro _Ge-005 7 - M = Mfree - Hreactant; E
B L] 13121 doublex & - Ra = -90/ET: =
Eﬂh 01 9 - [RE d] = Nomentirea(Il, EI, h, Ro, 0); =
=]
B« <1x121 double> || |10 7 SwRRleT(s. L, 1): g
11 - plot (x,Mj: grid on: m
2= ylabel('Bending Moment (KHwmj ') ; =
13 -  subplot(3,1,2): =
14 - plat (x, 123*R); grid on; =
15 - ylabel{'Rotation (mrads)'); 2
T
16 - subplot(3,1,3); 2
17 - plot {x,d*1e3); grid on; =
18 - xlabel ('Distance ALlong Menber (m)');
19 - ylabel|'Deflection {mm]');: E
1=
=
2
a (3] 2 ;
- T H = | | |
Current Directory | warkspace S g2 1 X3 | | |
= 0 2 V0574 5} &} 10 12
— istance Along Mermber ()
[R d] = MomentArea(.A. cumsimpsontn  ® | tempen® ¥ | BendingDisps.m % | Moment Area Examnple.m

As can be seen, the complete deflected profile is now available to us. Further, the

deflection at D is found to be 157.4/El , which compares well to the theoretical value

of 157.5/El , found in Example 7.

100

Rotation (mrads) Bending Moment (kNm)

Deflection (mm)

1 :
0 2 Y:-0.1574 6 8 10 12
Distance Along Member (m)
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5.3 Non-Prismatic Members

Introduction

In all examples so far we have only considered members whose properties do not
change along their length. This is clearly quite a simplification since it is necessary
for maximum structural efficiency that structures change shape to deal with
increasing or reducing bending moments etc. The Moment-Area Method is ideally
suited to such analyses. We will consider one simple example, and one slightly more

complex and general.
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Example 11

We consider the following cantilever and determine the deflections at B and C:

A ]

4 < ) Sehal
EZ

EZ

(R

The BMD and curvature diagrams thus become:

se So
T - Bad
s e
S%z So
2—E§I T Stk h__"‘ﬂ

; . el

2 2 1

To calculate the deflections, consider the deflected shape diagram:

" B c

ZA
B")A

c¥)

From Mohr’s First Theorem:

/8
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5 <A - [%2}[1]

Thus:

50
5, =—
° " El

Similarly, though with more terms for the deflection at C we have:
25 50
o.=A_, =|—-2|3[+|=—-2||1

5 250
El
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Example 12

We determine here an expression for the deflection at the end of a cantilever subject

to a point load at its tip which has linearly varying flexural rigidity:

P
A / Elq ‘ R
"
4
—t )
PL

-
TSN BUD

e WEI

P>

We must derive expression for both the moment and the flexural rigidity. Considering

the coordinate X, increasing from zero at Bto L at A:
M (x) = Px
X
El(x)=El,+(El, - EIB)I
If we introduce the following measure of the increase in EI:

_El,—El,
El

k

B

We can write:
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El(x):EIB(l+k%)

Now we can write the equation for curvature:

Px

EOR
El EIB[1+ kxj
L
_PL X
El, L+kx
To find the tip deflection we write:
L
= IM x dx
o El

And solving this (using symbolic computation!) gives:

5 - PL® | -2k +2log(1+k)+k?
® " 2EI k®

To retrieve our more familiar result for a prismatic member, we must use L’Hopital’s

Rule to find the limit as k — 0. As may be verified by symbolic computation:

_ 2 3
5 \Prlsmatlc\—llmZEl{ 2k +2log(1+k)+k }: PL

k? 3El
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As a sample application, let’s take the following parameters:
e P=10KkN;

e L=4m;

e EI_ =10 MNmM?.

We will investigate the change in deflection with the increase in El at A. Firstly, we

find our prismatic result:

PL® 10(43)

3E1 3(10x10°) o

8, |Prismatic| =

And then we plot the deflection for a range of k values:

251 x.0.01 ]
Y:21.17
[ ]

__20¢F -
£
P T~
(&)
9] \
= T X:2

T/

5 ! ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Stiffness Increase at A (k)

As can be seen, when k =2, in other words when EI, =3El, our deflection is 8.79

mm — a reduction to 41% of the prismatic deflection.
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Matlab Scripts
The Matlab scripts to calculate the previous results are:

% Use Symbolic Toolbox to perform integration
syms P L EI x k positive;

M = sym("P*x"); % M equation

El = sym("EI*(1+k*x/L)"); % EIl equation

Mohr2 = M/EIl*Xx; % 1st moment of M/EIl diagram

def = int(Mohr2,x,0,L); % definite integral

pretty(def); % display result

limit(def,k,0); % Prove limit as k->0 i1s prismatic
result

% Plot change in deflection by varying k

clear all;

P=10; L = 4; EI = 10e3; k = 0.01:0.01:2;

d = 1/2*P*L"3*(-2.*k+2*log(1+k)+k."2)/E1 . /K _."3;
plot(k,d*1e3); xlabel("Stiffness Increase at A (k)");
ylabel ("Deflection (mm)*)

dl = P*L"3/(3*El); % prismatic result
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6. Past Exam Questions

6.1 Summer 1998

(5) 30/3/62

4 Use the Momeni-area method (Mohr’s Theorems) to determine, for the frame shown in Fig. Q4.
(a) the bending moment in the frame and
(b) the deflection at D.
Sketch the bending moment diagram giving the value of the bending moment at all salient points.
Sketch the deflected shape of the frame.

Take EI = 4000 KNm* , (25 marks)

100kN -

O
B <) : e
AN
NS

£l CONSTANT

FIG Q4

Ans. V. =75kN T, 5. =4500/El —
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6.2 Summer 2005

Using the Moment-Area Method (Mohr’s Theorems):
(a) Determine the bending moments in the frame shown in Fig. Q3

when a load of 90kN is applied at B as shown.

Hence sketch the bending moment diagram.
(15 marks)

(b) Calculate the horizontal deflection of joint C .

(10 marks)
Assume E = 200 kN/mm2.

7 4
Assume [ = 8x10° mm’.

90kN_B C D
Sy

5 &

EI constant

3m

, 3m 3m

Ans. V, =22.5kN {, 5. =1519/El —
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6.3 Summer 2006

Use the Moment-area method (Mohr's Theorems) to determine, for the beam shown in Fig. Q4,
(a) the deflection at hinge C and

(b) the maximum deflection in span AB.

Sketch the deflected shape of the beam.

Take EI = 4000 kNm? .
(25 marks)

60kN

HINGE —

A B \( D E

- 7

| 6m | m) 2m) 2m)}

Ans.s,=36mmi, s =27.6mm7T

ax| AB|
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6.4 Summer 2007

4. (a) For the frame shown in Fig. Q4(a), using Mohr’s Theorems:

(i)  Determine the vertical reaction at joint C;
(if)  Draw the bending moment diagram;
(iii) Determine the horizontal deflection of joint C.

Note:

You may neglect axial effects in the members.

Take El =36x10% kNm? for all members.

100 kN B

~— —

S
™

/

| 6m

FIG. Q4(a)

(15 marks)

Ans. V. =15kN T, &, = 495/El —
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6.5 Semester 1 2007/8

QUESTION 3

For the beam shown in Fig. Q3, using the Moment-Area Method (Mohr’s Theorems):
0] Draw the bending moment diagram;

(i)  Determine the maximum deflection;

(iii)  Draw the deflected shape diagram.

Note:
Take El =20x10% kNm?,
(40 marks)
40 kN
HINGE
w Y 4
A B C D E
4 m L, 2m ., 2m |, 2m |

FIG. Q3

Ans.V, =70kN ., 8, ,. =47.4/El, 5. =267/El , 5, = 481/El
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6.6 Semester 1 2008/9

QUESTION 3

For the frame shown in Fig. Q3, using the Moment-Area Method (Mohr’s Theorems):
(iv)  Draw the bending moment diagram;

(v)  Determine the vertical and horizontal deflection of joint E;

(vi)  Draw the deflected shape diagram.

Note:

Take El =20x10% kNm?.
(40 marks)

E, —
100 kNm S
1 —

D
e
(q\|

A B/ C
4 m I} 2m
FIG. Q3

Ans. V, =375kN T, &, =20 mm 1, 5, =65 mm—
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6.7 Semester 1 2009/10

QUESTION 4

For the frame shown in Fig. Q4, using the Moment-Area Method (Mohr’s Theorems):
(vii) Draw the bending moment diagram;

(viii) Determine the horizontal deflection of joint D;

(ix)  Draw the deflected shape diagram.

(25 marks)

Note:
Take El =20x10° kKNm?.

60 kN
B C
<[
E =
© =
()
Ni
N A D
DN —3
3m 3m ngq
FIG. Q4

Ans.V, =47kN T, 5, =725.6 mm —
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7. Appendix

7.1 AreaProperties

These are well known for triangular and rectangular areas. For parabolic areas we

have:

Shape Area Centroid
X
e i o
2
\%/;"// J A=2Xy 7=%x
‘ /
K/z_
R
A
j 1 'S A=—xy ngx
S
/g&
s 3/4.)( ?r
a4
4
3 M A==xy YZ%X
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7.2 References

e  Benham, P.P., Crawford, R.J., and Armstrong, C.G., Mechanics of Engineering
Materials, 2nd Edn., Pearson Prentice Hall, Harlow, 1996.

e Coates, R.C., Coutie, M.G., and Kong, F.K., Structural Analysis, 3rd Edn.,
Chapman & Hall, 1987.

e Ghali, A., Neville, A, and Brown, T.G., Structural Analysis: A Unified
Classical and Matrix Approach, 6th Edn., Taylor & Francis, 2009.

e Neal, B.G,, Structural Theorems and their Applications, Pergamon Press, 1964.

e Rees, D.W.A., Mechanics of Solids and Structures, Imperial College Press,
London, 2000.

92 Dr. C. Caprani



	1. Introduction
	1.1 Purpose

	2. Theory
	2.1 Basis
	2.2 Mohr’s First Theorem (Mohr I)
	Development
	Example 1

	2.3 Mohr’s Second Theorem (Mohr II)
	Development
	Example 2

	2.4 Sign Convention

	3. Application to Determinate Structures
	3.1 Basic Examples
	Example 3
	Example 4

	3.2 Finding Deflections
	General Procedure
	Maximum Deflection
	Example 5

	3.3 Problems

	4. Application to Indeterminate Structures
	4.1 Basis of Approach
	4.2 Example 6: Propped Cantilever
	4.3 Example 7: 2-Span Beam
	4.4 Example 8: Simple Frame
	Part (a)
	Part (b)

	4.5 Example 9: Complex Frame
	Solve for a Redundant
	Part (b) - Horizontal Deflection at D
	Part (a) – Reactions and Bending Moment Diagram

	4.6 Problems

	5. Further Developments
	5.1 Theorem of Three Moments
	Introduction
	Development
	Example 10

	5.2 Numerical Calculation of Deformation
	Introduction
	Development
	Implementation
	MS Excel
	Matlab

	5.3 Non-Prismatic Members
	Introduction
	Example 11
	Example 12


	6. Past Exam Questions
	6.1 Summer 1998
	6.2 Summer 2005
	6.3 Summer 2006
	6.4 Summer 2007
	6.5 Semester 1 2007/8
	6.6 Semester 1 2008/9
	6.7 Semester 1 2009/10

	7. Appendix
	7.1 Area Properties
	7.2 References


